49 research outputs found

    UNLV Transmutation Research Program Proposal Year III: Design and Evaluation of Processes for Fuel Fabrication

    Full text link
    The objective of this project is the design and evaluation of manufacturing processes for transmuter fuel fabrication. The large-scale deployment of remote fabrication and refabrication processes will be required for all transmutation scenarios. Current program emphasis is on a five-year effort to determine the feasibility of transmutation as a technology to limit the need for repository storage of spent commercial fuel. The evaluation of the fabrication processes will create a decision support data base to document design, operations, and costs. Fabrication processes required for different fuel types differ in terms of equipment types, throughput, and cost. Differential cost Implications of various fuel choices will be assessed. The ongoing year 1 project has been focusing on collecting information on existing technologies, equipment costs, and material throughput. Another aspect during years 1 and 2 has been the assessment of robotic technology and robot supervision and control, and the simulation of material handling operations using 3-D simulation tools with view towards the development of a fully automated and reliable, autonomous manufacturing process. Such development has the potential to decrease the cost of remote fuel fabrication and to make transmutation a more economically viable process. An added benefit would be the potential for exposure dose reductions to workers. This project is being conducted in close cooperation with the fabrication development group at Argonne National Lab. Year 3 of the project will be devoted to developing further data and knowledge regarding the cost and feasibility of automated fuel manufacture in a hot cell. The detailed simulation of manufacturing processes (as robotic operations supervised by remote operators and as virtual mock-up facilities) will be continued. Both normal operations as well as failure scenarios will be investigated, analyzed, and simulated. The results of this study will be documented in detail. The results of the simulations will be used by Advanced Fuel Cycle Initiative (AFCI) program personnel to perform sensitivity studies on the impact of different fuel types on AFCI system operation. Conceptual designs for plant designs and the accompanying supervision and control systems will be developed. Impacts on transmutation system capital cost, economics of operation, estimates of process loss, and environmental and safety issues will be estimated in further detail, continuing the work from year 2

    An Interactive Visual Environment for Scientific Problem Solving

    Full text link
    Science and engineering students do not typically receive explicit training in scientific problem solving, i.e. applying science principles to specific situations. Students’ problem solving skills often show little improvement throughout their course of studies. This paper describes a structured, graphical, interactive (GUI) learning environment, which presents problems and tools for analysis in systematic and logical order, and encourages the student to develop the solution path in the manner of an experienced expert. The learning environment’s subject area is Engineering Dynamics, which was selected for its systematic structure and its early (usually sophomore) place in the undergraduate curriculum. The software presents the concepts required to solve homework problems, organized along book chapters. First, the student is prompted to analyze the problem statement, i.e. to extract relevant information from the text and classify the problem. Free-body diagrams are developed interactively on-screen. The problem solution is then developed conceptually by applying the problem information to the current (and preceding) chapter’s laws as appropriate. The conceptual solution is complete if the number of variables in the problem matches the number of equations in the conceptual solution set. Lastly, the quantitative solution is developed in Mathcad, using the applicable laws from the conceptual solution and the data given. The problem solving software thus creates and reinforces a pattern for problem solving which is typically absent among novice students: they tend to start the solution process with the numbers at hand, and then try to find an equation that yields the desired result. Over time, the software thus is expected to train students in systematic problem solving. Context-sensitive help throughout explains laws, procedures, and their possible connections to the problem at hand

    Design Concepts and Process Analysis for Transmuter Fuel Manufacturing

    Full text link
    The safe and effective manufacturing of actinide-bearing fuels for any transmutation strategy requires that the entire manufacturing process be contained within a shielded hot cell environment. To ensure that the fabrication process is feasible, the entire process must be designed for remote operation. The equipment must be reliable enough to perform over several decades, and also easy to maintain or repair remotely. The facility must also be designed to facilitate its own decontamination and decommissioning. In addition to these design factors, the potential viability of any fuel fabrication process will also be impacted by a number of variables, such as the current state of technology, potential problem areas, deployment scaling, facility safety, and cost. A fabrication process simulation model with several Waelischmiller robots in a hot cell was developed and coupled with MatLab control software. Matlab provides the interface with the robot and is used to control the system. The simulation renders a realistic simulation of the forces and torques present during robot motion. A 3-D manufacturing process simulation using CAD models and the Newtonian dynamics of the moving components has been developed

    Design and Evaluation of Processes for Fuel Fabrication

    Full text link
    One of the primary concerns in selecting a fuel matrix for actinide-bearing fuels, such as those for transmutation systems, is fuel fabrication. Fuel fabrication technologies for the fabrication and re-fabrication processes must meet several technical considerations, such as minimizing secondary radioactive waste streams, economic viability, reasonable capital outlay, and must be easy to maintain over the transmuter core life cycle. Additionally, the fuel type chosen must be easily manufactured in a remote environment. The volatile behavior of americium during thermal processing further complicates these goals. Currently, the national program is investigating a number of candidate fuel matrices: metallic, ceramic, dispersion, nitride, and carbide/ TRISO, just to name the leading candidates. This project examines the manufacturing processes currently under consideration for these fuel types, as currently envisioned by the Argonne National Laboratory-West manufacturing group. Each fuel type requires developing a distinct remote fabrication process. Conceptual fuel fabrication processes for the fuel types will be developed in conjunction with ANL. This knowledge allows scientists to make an informed selection regarding which candidate fuels require further development and irradiation testing for a transmutation system. The UNLV research team achieved the following tasks during the first year of research: ‱ Survey of candidate transmutation fuels, coupled with a detailed evaluation of the identified fuel manufacturing processes following criteria established by the national fuel development program; ‱ Conceptual computer modeling of one manufacturing process allowing the identification of areas where automated processes are crucial to maintain the required throughput rates; ‱ Mr. Richard Silva, M.S. student, developed an initial work cell simulation with two robots. He will continue to develop detailed 3-D process simulation models for his thesis project; and, ‱ Mr. Jae-Kyu Lee, a Ph.D. student, developed a conceptual methodology for vision-based hot cell supervision and control

    Design Concepts and Process Analysis for Transmuter Fuel Manufacturing: Quarterly Progress Report #2

    Full text link
    This report discusses mainly the fabrication of inert matrix fuels. There are three fabrication routes to obtain inert matrix fuels (IMF). IMF is a dispersion-type fuel in which the actinide phase is distributed as a separate phase in a so called inert matrix. This concept has evolved as one of the most promising in the field of transmutation. The following section discusses each manufacturing route aside

    Design and Evaluation of Processes for Transmuter Fuel Fabrication

    Full text link
    ‱ Project Objective: examine autonomous robotic fuel fabrication processes with regard to hot cell and equipment design, operations, and costs. ‱ Fabrication processes for different fuel types differ in terms of equipment types, throughput, and cost. ‱ Design options are restricted by the requirement to employ only radiation-hardened machinery and components ‱ Benefit to Department of Energy: decision support for the selection of the most suitable manufacturing process

    Design and Evaluation of Processes for Fuel Fabrication: Quarterly Progress Report #11

    Full text link
    The eleventh quarter of the project covered the following: ‱ Mr. Richard Silva successfully defended his thesis in April 2004 and graduated from the MEG Master’s program. ‱ Further refinements on Concepts and Methods for Vision-Based Hot Cell Supervision and control, focusing on rule-based object recognition (Ph.D. Graduate Jae-Kyu Lee). Ms. Caroline Wiejak, an exchange student from the ESIEE in Marne-la-Vallee, France is continuing with the image analysis effort. To date, she has transferred Jae-Kyu’s code to Matlab, and is presently expanding its application to more complex 3D shapes. ‱ Graduate student Jamil Renno refined and detailed his simulations of more complex fuel manufacturing and fuel pin assembly scenarios using hot cell robots. Jamil also begun working on the manufacturing modeling of metal fuels. ‱ The paper “Design and Virtual Testing of Robotic Assembly Processes for Hot Cells” was presented at the 10th International Conference on Robotics & Remote Systems (in March 2004) in Gainesville, FL)

    Design Concepts and Process Analysis for Transmuter Fuel Manufacturing: Quarterly Progress Report #6

    Full text link
    Project Milestones ‱ Completed a systematic study seeking to arrive at an optimized plant configuration, using value engineering techniques in January 2006. ‱ Vision-based robot serving and automated plant safety monitoring is currently in progress

    Robotic Radionuclide Inspection and Mapping of Surface Contamination On Building Surfaces

    Get PDF
    ABSTRACT The mapping of localized regions of radionuclide contamination in a building can be a time consuming and costly task. Humans moving hand-held radiation detectors over the target areas are subject to fatigue. A contamination map based on manual surveys can contain significant operator-induced inaccuracies. A Fanuc M16i light industrial robot has been configured for installation on a mobile aerial work platform, such as a tall forklift. When positioned in front of a surface, the robot can map the radiation levels over a surface area of up to 2m by 2m. The robot's end effector is a commercial alpha-beta radiation sensor, augmented with range and collision avoidance sensors to ensure operational safety as well as to maintain a constant gap between surface and radiation sensors. A graphical user interface guides the robot operator to position the robot at the desired wall segments, and to select an area for surveying. After the operator has entered the required parameters, the custom surveying software plans the scan sequence, alerts of any potential problems, such as unreachable singularities, and creates a contamination map of the surveyed region. Maps of multiple regions can be combined into a single map of the entire region. The survey data are stored in a data base file. In addition to automated surface scans, operators can manually select regions for further inspection, as well as control the end effector motion manually. In comparison to manual contamination surveys, the robotic approach is more accurate, reliable, and faster

    Global variations in diabetes mellitus based on fasting glucose and haemogloblin A1c

    Get PDF
    Fasting plasma glucose (FPG) and haemoglobin A1c (HbA1c) are both used to diagnose diabetes, but may identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening had elevated FPG, HbA1c, or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardised proportion of diabetes that was previously undiagnosed, and detected in survey screening, ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the agestandardised proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global gap in diabetes diagnosis and surveillance.peer-reviewe
    corecore